{ "id": "1010.5341", "version": "v1", "published": "2010-10-26T09:35:32.000Z", "updated": "2010-10-26T09:35:32.000Z", "title": "On the distribution of Galois groups", "authors": [ "Rainer Dietmann" ], "comment": "6 pages", "doi": "10.1112/S0025579311002105", "categories": [ "math.NT" ], "abstract": "Let $G$ be a subgroup of the symmetric group $S_n$, and let $\\delta_G=|S_n/G|^{-1}$ where $|S_n/G|$ is the index of $G$ in $S_n$. Then there are at most $O_{n, \\epsilon}(H^{n-1+\\delta_G+\\epsilon})$ monic integer polynomials of degree $n$ having Galois group $G$ and height not exceeding $H$, so there are only `few' polynomials having `small' Galois group.", "revisions": [ { "version": "v1", "updated": "2010-10-26T09:35:32.000Z" } ], "analyses": { "subjects": [ "11C08", "11R32", "11G35" ], "keywords": [ "galois group", "distribution", "monic integer polynomials", "symmetric group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.5341D" } } }