{ "id": "1010.4937", "version": "v2", "published": "2010-10-24T07:22:36.000Z", "updated": "2011-03-04T13:32:32.000Z", "title": "Diffeomorphisms with various $C^1$ stable properties", "authors": [ "Wenxiang Sun", "Xueting Tian" ], "comment": "8 pages", "journal": "Acta Mathematica Scientia 2012,32B(2):552-558", "categories": [ "math.DS" ], "abstract": "Let $M$ be a smooth compact manifold and $\\Lambda$ be a compact invariant set. In this paper we prove that for every robustly transitive set $\\Lambda$, $f|_\\Lambda$ satisfies a $C^1-$generic-stable shadowable property (resp., $C^1-$generic-stable transitive specification property or $C^1-$generic-stable barycenter property) if and only if $\\Lambda$ is a hyperbolic basic set. In particular, $f|_\\Lambda$ satisfies a $C^1-$stable shadowable property (resp., $C^1-$stable transitive specification property or $C^1-$stable barycenter property) if and only if $\\Lambda$ is a hyperbolic basic set. Similar results are valid for volume-preserving case.", "revisions": [ { "version": "v2", "updated": "2011-03-04T13:32:32.000Z" } ], "analyses": { "keywords": [ "stable properties", "hyperbolic basic set", "transitive specification property", "diffeomorphisms", "shadowable property" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.4937S" } } }