{ "id": "1010.4595", "version": "v2", "published": "2010-10-21T22:48:45.000Z", "updated": "2011-04-16T10:24:49.000Z", "title": "Asymptotic normality of the size of the giant component via a random walk", "authors": [ "Bela Bollobas", "Oliver Riordan" ], "comment": "11 pages; slightly expanded, reference added", "journal": "J. Combinatorial Theory B 102 (2012), 53--61", "doi": "10.1016/j.jctb.2011.04.003", "categories": [ "math.PR", "math.CO" ], "abstract": "In this paper we give a simple new proof of a result of Pittel and Wormald concerning the asymptotic value and (suitably rescaled) limiting distribution of the number of vertices in the giant component of $G(n,p)$ above the scaling window of the phase transition. Nachmias and Peres used martingale arguments to study Karp's exploration process, obtaining a simple proof of a weak form of this result. We use slightly different martingale arguments to obtain a much sharper result with little extra work.", "revisions": [ { "version": "v2", "updated": "2011-04-16T10:24:49.000Z" } ], "analyses": { "subjects": [ "05C80" ], "keywords": [ "giant component", "asymptotic normality", "random walk", "martingale arguments", "study karps exploration process" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.4595B" } } }