{ "id": "1010.4133", "version": "v1", "published": "2010-10-20T08:49:10.000Z", "updated": "2010-10-20T08:49:10.000Z", "title": "$C^1$-actions of Baumslag-Solitar groups on $S^1$", "authors": [ "Nancy Guelman", "Isabelle Liousse" ], "journal": "Algebraic & Geometric Topology 11 (2011) 1701-1707", "categories": [ "math.DS" ], "abstract": "Let $BS(1, n)=< a, b | aba^{-1} = b^n >$ be the solvable Baumslag-Solitar group, where $ n\\geq 2$. It is known that B(1, n) is isomorphic to the group generated by the two affine maps of the line : $f_0(x) = x + 1$ and $h_0(x) = nx $. The action on $S^1 = \\RR \\cup {\\infty}$ generated by these two affine maps $f_0$ and $h_0 $ is called the standard affine one. We prove that any representation of BS(1,n) into $Diff^1(S^1)$ is (up to a finite index subgroup) semiconjugated to the standard affine action.", "revisions": [ { "version": "v1", "updated": "2010-10-20T08:49:10.000Z" } ], "analyses": { "subjects": [ "37Bxx", "37Exx" ], "keywords": [ "affine maps", "standard affine action", "finite index subgroup", "solvable baumslag-solitar group", "representation" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.4133G" } } }