{ "id": "1010.3661", "version": "v1", "published": "2010-10-18T17:48:53.000Z", "updated": "2010-10-18T17:48:53.000Z", "title": "Homogeneous Einstein metrics on G_2/T", "authors": [ "Andreas Arvanitoyeorgos", "Ioannis Chrysikos", "Yusuke Sakane" ], "comment": "19 pages", "categories": [ "math.DG" ], "abstract": "We construct the Einstein equation for an invariant Riemannian metric on the exceptional full flag manifold $M=G_2/T$. By computing a Gr\\\"obner basis for a system of polynomials of multi-variables we prove that this manifold admits exactly two non-K\\\"ahler invariant Einstein metrics. Thus $G_2/T$ turns out to be the first known example of an exceptional full flag manifold which admits at least one non-K\\\"ahler and not normal homogeneous Einstein metric.", "revisions": [ { "version": "v1", "updated": "2010-10-18T17:48:53.000Z" } ], "analyses": { "keywords": [ "exceptional full flag manifold", "invariant riemannian metric", "normal homogeneous einstein metric", "invariant einstein metrics", "einstein equation" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.3661A" } } }