{ "id": "1010.3603", "version": "v2", "published": "2010-10-18T14:07:47.000Z", "updated": "2012-01-27T17:06:36.000Z", "title": "A convergent series representation for the density of the supremum of a stable process", "authors": [ "Friedrich Hubalek", "Alexey Kuznetsov" ], "comment": "12 pages", "journal": "Electron. Commun. Probab., 16, no. 8, 84-95, 2011", "doi": "10.1214/ECP.v16-1601", "categories": [ "math.PR" ], "abstract": "We study the density of the supremum of a strictly stable L\\'evy process. We prove that for almost all values of the index $\\alpha$ -- except for a dense set of Lebesgue measure zero -- the asymptotic series which were obtained in A. Kuznetsov (2010) \"On extrema of stable processes\" are in fact absolutely convergent series representations for the density of the supremum.", "revisions": [ { "version": "v2", "updated": "2012-01-27T17:06:36.000Z" } ], "analyses": { "subjects": [ "60G52" ], "keywords": [ "stable process", "fact absolutely convergent series representations", "lebesgue measure zero", "strictly stable levy process", "asymptotic series" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.3603H" } } }