{ "id": "1010.2342", "version": "v3", "published": "2010-10-12T09:59:19.000Z", "updated": "2012-10-25T03:06:37.000Z", "title": "Fourier transform and rigidity of certain distributions", "authors": [ "Binyong Sun", "Chen-Bo Zhu" ], "comment": "10 pages", "journal": "Int. J. Math. 23, 1250129 (2012)", "doi": "10.1142/S0129167X12501297", "categories": [ "math.FA" ], "abstract": "Let $E$ be a finite dimensional vector space over a local field, and $F$ be its dual. For a closed subset $X$ of $E$, and $Y$ of $F$, consider the space $D^{-\\xi}(E;X,Y)$ of tempered distributions on $E$ whose support are contained in $X$ and support of whose Fourier transform are contained in $Y$. We show that $D^{-\\xi}(E;X,Y)$ possesses a certain rigidity property, for $X$, $Y$ which are some finite unions of affine subspaces.", "revisions": [ { "version": "v3", "updated": "2012-10-25T03:06:37.000Z" } ], "analyses": { "subjects": [ "42B35", "46F05" ], "keywords": [ "fourier transform", "finite dimensional vector space", "local field", "rigidity property", "finite unions" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.2342S" } } }