{ "id": "1010.2041", "version": "v2", "published": "2010-10-11T08:56:17.000Z", "updated": "2011-02-16T09:42:02.000Z", "title": "The U(1) Lattice Gauge Theory Universally Connects All Classical Models with Continuous Variables, Including Background Gravity", "authors": [ "Ying Xu", "Gemma De las Cuevas", "Wolfgang Dür", "Hans J. Briegel", "Miguel Angel Martin-Delgado" ], "comment": "Published version, 31 pages, 12 figures; references updated", "journal": "J.Stat.Mech.1102:P02013,2011", "doi": "10.1088/1742-5468/2011/02/P02013", "categories": [ "quant-ph", "cond-mat.stat-mech", "hep-lat" ], "abstract": "We show that the partition function of many classical models with continuous degrees of freedom, e.g. abelian lattice gauge theories and statistical mechanical models, can be written as the partition function of an (enlarged) four-dimensional lattice gauge theory (LGT) with gauge group U(1). This result is very general that it includes models in different dimensions with different symmetries. In particular, we show that a U(1) LGT defined in a curved spacetime can be mapped to a U(1) LGT with a flat background metric. The result is achieved by expressing the U(1) LGT partition function as an inner product between two quantum states.", "revisions": [ { "version": "v2", "updated": "2011-02-16T09:42:02.000Z" } ], "analyses": { "subjects": [ "03.67.Lx", "05.50.+q", "03.67.-a", "11.15.Ha", "75.10.Hk" ], "keywords": [ "lattice gauge theory universally connects", "classical models", "background gravity", "continuous variables", "partition function" ], "tags": [ "journal article" ], "publication": { "journal": "Journal of Statistical Mechanics: Theory and Experiment", "year": 2011, "month": "Feb", "volume": 2011, "number": 2, "pages": 2013 }, "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "inspire": 872538, "adsabs": "2011JSMTE..02..013X" } } }