{ "id": "1010.1926", "version": "v2", "published": "2010-10-10T14:58:43.000Z", "updated": "2011-04-13T12:48:08.000Z", "title": "A proof of the S-genus identities for ternary quadratic forms", "authors": [ "Alexander Berkovich", "Jonathan Hanke", "William Jagy" ], "comment": "14 pages", "categories": [ "math.NT" ], "abstract": "In this paper we prove the main conjectures of Berkovich and Jagy about weighted averages of representation numbers over an S-genus of ternary lattices (defined below) for any odd squarefree S \\in N. We do this by reformulating them in terms of local quantities using the Siegel-Weil and Conway-Sloane formulas, and then proving the necessary local identities. We conclude by conjecturing generalized formulas valid over certain totally real number fields as a direction for future work.", "revisions": [ { "version": "v2", "updated": "2011-04-13T12:48:08.000Z" } ], "analyses": { "subjects": [ "11E12", "11E20", "11E25", "11F27", "11F30", "11F37" ], "keywords": [ "ternary quadratic forms", "s-genus identities", "totally real number fields", "necessary local identities", "local quantities" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.1926B" } } }