{ "id": "1010.1923", "version": "v1", "published": "2010-10-10T14:27:02.000Z", "updated": "2010-10-10T14:27:02.000Z", "title": "Determinantal quartics and the computation of the Picard group", "authors": [ "Andreas-Stephan Elsenhans", "Jörg Jahnel" ], "categories": [ "math.AG", "math.NT" ], "abstract": "We test the methods for computing the Picard group of a $K3$ surface in a situation of high rank. The examples chosen are resolutions of quartics in $\\bP^3$ having 14 singularities of type $A_1$. Our computations show that the method of R. van Luijk works well when sufficiently large primes are used.", "revisions": [ { "version": "v1", "updated": "2010-10-10T14:27:02.000Z" } ], "analyses": { "subjects": [ "14J28", "14C22", "14J27" ], "keywords": [ "picard group", "determinantal quartics", "computation", "van luijk works", "high rank" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.1923E" } } }