{ "id": "1010.1754", "version": "v1", "published": "2010-10-08T18:19:47.000Z", "updated": "2010-10-08T18:19:47.000Z", "title": "Functional equations for zeta functions of $\\mathbb{F}_1$-schemes", "authors": [ "Oliver Lorscheid" ], "comment": "4 pages", "categories": [ "math.NT", "math.AG" ], "abstract": "For a scheme $X$ whose $\\mathbb F_q$-rational points are counted by a polynomial $N(q)=\\sum a_iq^i$, the $\\mathbb{F}_1$-zeta function is defined as $\\zeta(s)=\\prod(s-i)^{-a_i}$. Define $\\chi=N(1)$. In this paper we show that if $X$ is a smooth projective scheme, then its $\\mathbb{F}_1$-zeta function satisfies the functional equation $\\zeta(n-s) = (-1)^\\chi \\zeta(s)$. We further show that the $\\mathbb{F}_1$-zeta function $\\zeta(s)$ of a split reductive group scheme $G$ of rank $r$ with $N$ positive roots satisfies the functional equation $\\zeta(r+N-s) = (-1)^\\chi ( \\zeta(s) )^{(-1)^r}$.", "revisions": [ { "version": "v1", "updated": "2010-10-08T18:19:47.000Z" } ], "analyses": { "subjects": [ "11G25", "14G10", "14G15", "20G15" ], "keywords": [ "functional equation", "split reductive group scheme", "zeta function satisfies", "rational points", "smooth projective scheme" ], "note": { "typesetting": "TeX", "pages": 4, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.1754L" } } }