{ "id": "1010.1443", "version": "v1", "published": "2010-10-07T14:38:49.000Z", "updated": "2010-10-07T14:38:49.000Z", "title": "The Fujita phenomenon in exterior domains under the Robin boundary conditions", "authors": [ "Jean-François Rault" ], "comment": "9 pages", "categories": [ "math.AP" ], "abstract": "The Fujita phenomenon for nonlinear parabolic problems dtu = \\deltau + up in an exterior domain of RN under the Robin boundary conditions is investigated in the superlinear case. As in the case of Dirichlet boundary conditions, it turns out that there exists a critical exponent p = 1+2/N such that blow-up of positive solutions always occurs for subcritical exponents, whereas in the supercritical case global existence can occur for small non-negative initial data.", "revisions": [ { "version": "v1", "updated": "2010-10-07T14:38:49.000Z" } ], "analyses": { "keywords": [ "robin boundary conditions", "fujita phenomenon", "exterior domain", "nonlinear parabolic problems dtu", "dirichlet boundary conditions" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.1443R" } } }