{ "id": "1010.1356", "version": "v1", "published": "2010-10-07T07:21:38.000Z", "updated": "2010-10-07T07:21:38.000Z", "title": "Universality for SLE(4)", "authors": [ "Jason Miller" ], "comment": "58 pages", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We resolve a conjecture of Sheffield that $\\SLE(4)$, a conformally invariant random curve, is the universal limit of the chordal zero-height contours of random surfaces with isotropic, uniformly convex potentials. Specifically, we study the \\emph{Ginzburg-Landau $\\nabla \\phi$ interface model} or \\emph{anharmonic crystal} on $D_n = D \\cap \\tfrac{1}{n} \\Z^2$ for $D \\subseteq \\C$ a bounded, simply connected Jordan domain with smooth boundary. This is the massless field with Hamiltonian $\\CH(h) = \\sum_{x \\sim y} \\CV(h(x) - h(y))$ with $\\CV$ symmetric and uniformly convex and $h(x) = \\phi(x)$ for $x \\in \\partial D_n$, $\\phi \\colon \\partial D_n \\to \\R$ a given function. We show that the macroscopic chordal contours of $h$ are asymptotically described by $\\SLE(4)$ for appropriately chosen $\\phi$.", "revisions": [ { "version": "v1", "updated": "2010-10-07T07:21:38.000Z" } ], "analyses": { "keywords": [ "universality", "macroscopic chordal contours", "conformally invariant random curve", "chordal zero-height contours", "uniformly convex" ], "note": { "typesetting": "TeX", "pages": 58, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.1356M" } } }