{ "id": "1010.1251", "version": "v1", "published": "2010-10-06T19:58:27.000Z", "updated": "2010-10-06T19:58:27.000Z", "title": "Quasi-optimal convergence rate of an AFEM for quasi-linear problems", "authors": [ "Eduardo M. Garau", "Pedro Morin", "Carlos Zuppa" ], "categories": [ "math.NA" ], "abstract": "We prove the quasi-optimal convergence of a standard adaptive finite element method (AFEM) for nonlinear elliptic second-order equations of monotone type. The adaptive algorithm is based on residual-type a posteriori error estimators and D\\\"orfler's strategy is assumed for marking. We first prove a contraction property for a suitable definition of total error, which is equivalent to the total error as defined by Casc\\'on et al. (in SIAM J. Numer. Anal. 46 (2008), 2524--2550), and implies linear convergence of the algorithm. Secondly, we use this contraction to derive the optimal cardinality of the AFEM.", "revisions": [ { "version": "v1", "updated": "2010-10-06T19:58:27.000Z" } ], "analyses": { "keywords": [ "quasi-optimal convergence rate", "quasi-linear problems", "nonlinear elliptic second-order equations", "standard adaptive finite element method", "total error" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.1251G" } } }