{ "id": "1010.0956", "version": "v1", "published": "2010-10-05T17:45:28.000Z", "updated": "2010-10-05T17:45:28.000Z", "title": "Calabi product Lagrangian immersions in complex projective space and complex hyperbolic space", "authors": [ "Haizhong Li", "Xianfeng Wang" ], "categories": [ "math.DG" ], "abstract": "Starting from two Lagrangian immersions and a Legendre curve $\\tilde{\\gamma}(t)$ in $\\mathbb{S}^3(1)$ (or in $\\mathbb{H}_1^3(1)$), it is possible to construct a new Lagrangian immersion in $\\mathbb{CP}^n$ (or in $\\mathbb{CH}^n$), which is called a warped product Lagrangian immersion. When $\\tilde{\\gamma}(t)=(r_1e^{i(\\frac{r_2}{r_1}at)}, r_2e^{i(- \\frac{r_1}{r_2}at)})$ (or $\\tilde{\\gamma}(t)=(r_1e^{i(\\frac{r_2}{r_1}at)}, r_2e^{i(\\frac{r_1}{r_2}at)})$), where $r_1$, $r_2$, and $a$ are positive constants with $r_1^2+r_2^2=1$ (or $-r_1^2+r_2^2=-1$), we call the new Lagrangian immersion a Calabi product Lagrangian immersion. In this paper, we study the inverse problem: how to determine from the properties of the second fundamental form whether a given Lagrangian immersion of $\\mathbb{CP}^n$ or $\\mathbb{CH}^n$ is a Calabi product Lagrangian immersion. When the Calabi product is minimal, or is Hamiltonian minimal, or has parallel second fundamental form, we give some further characterizations.", "revisions": [ { "version": "v1", "updated": "2010-10-05T17:45:28.000Z" } ], "analyses": { "subjects": [ "53B25", "53B20" ], "keywords": [ "calabi product lagrangian immersion", "complex hyperbolic space", "complex projective space", "parallel second fundamental form", "warped product lagrangian immersion" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.0956L" } } }