{ "id": "1010.0665", "version": "v3", "published": "2010-10-04T19:33:38.000Z", "updated": "2012-01-24T10:28:39.000Z", "title": "The Secant Conjecture in the real Schubert calculus", "authors": [ "Luis Garcia-Puente", "Nickolas Hein", "Christopher J. Hillar", "Abraham Martin del Campo", "James Ruffo", "Frank Sottile", "Zach Teitler" ], "comment": "19 pages", "categories": [ "math.AG" ], "abstract": "We formulate the Secant Conjecture, which is a generalization of the Shapiro Conjecture for Grassmannians. It asserts that an intersection of Schubert varieties in a Grassmannian is transverse with all points real, if the flags defining the Schubert varieties are secant along disjoint intervals of a rational normal curve. We present theoretical evidence for it as well as computational evidence obtained in over one terahertz-year of computing, and we discuss some phenomena we observed in our data.", "revisions": [ { "version": "v3", "updated": "2012-01-24T10:28:39.000Z" } ], "analyses": { "subjects": [ "14M25", "14P99" ], "keywords": [ "real schubert calculus", "secant conjecture", "schubert varieties", "rational normal curve", "grassmannian" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.0665G" } } }