{ "id": "1010.0662", "version": "v2", "published": "2010-10-04T19:03:32.000Z", "updated": "2011-07-26T18:55:43.000Z", "title": "Minimal thinness for subordinate Brownian motion in half space", "authors": [ "Panki Kim", "Renming Song", "Zoran Vondracek" ], "comment": "31 pages", "categories": [ "math.PR" ], "abstract": "We study minimal thinness in the half-space $H:=\\{x=(\\wt{x}, x_d):\\, \\wt{x}\\in \\R^{d-1}, x_d>0\\}$ for a large class of rotationally invariant L\\'evy processes, including symmetric stable processes and sums of Brownian motion and independent stable processes. We show that the same test for the minimal thinness of a subset of $H$ below the graph of a nonnegative Lipschitz function is valid for all processes in the considered class. In the classical case of Brownian motion this test was proved by Burdzy.", "revisions": [ { "version": "v2", "updated": "2011-07-26T18:55:43.000Z" } ], "analyses": { "subjects": [ "60J50", "31C40", "31C35", "60J45", "60J75" ], "keywords": [ "subordinate brownian motion", "half space", "rotationally invariant levy processes", "study minimal thinness", "large class" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.0662K" } } }