{ "id": "1010.0211", "version": "v1", "published": "2010-10-01T17:06:57.000Z", "updated": "2010-10-01T17:06:57.000Z", "title": "Fonctions critiques et équations aux dérivées partielles sur les variétés Riemanniennes compactes", "authors": [ "Stephane Collion" ], "comment": "Th\\`ese de Doctorat, avec version anglaise", "categories": [ "math.DG", "math.AP" ], "abstract": "We study in this work the existence of minimizing solutions to the critical-power type equation $\\triangle_{\\textbf{g}}u+h.u = f.u^{\\frac{n+2}{n-2}}$ on a compact riemannian manifold in the limit case normally not solved by variational methods. For this purpose, we use a concept of \"critical function\" that was originally introduced by E. Hebey and M. Vaugon for the study of second best constant in the Sobolev embeddings. Along the way, we prove an important estimate concerning concentration phenomena's when $f$ is a non-constant function. We give here intuitive details.", "revisions": [ { "version": "v1", "updated": "2010-10-01T17:06:57.000Z" } ], "analyses": { "subjects": [ "53C21", "58J60", "35J20" ], "keywords": [ "aux dérivées partielles sur", "variétés riemanniennes compactes", "fonctions critiques", "important estimate concerning concentration phenomenas", "compact riemannian manifold" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.0211C" } } }