{ "id": "1010.0152", "version": "v2", "published": "2010-10-01T13:16:30.000Z", "updated": "2011-02-17T16:13:54.000Z", "title": "The average rank of elliptic $n$-folds", "authors": [ "Remke Kloosterman" ], "comment": "Expansion of the discussion of the cycle class map; several minor changes", "categories": [ "math.NT", "math.AG" ], "abstract": "Let $V/\\mathbb{F}_q$ be a variety of dimension at least two. We show that the density of elliptic curves $E/\\mathbb{F}_q(V)$ with positive rank is zero if $V$ has dimension at least 3 and is at most $1-\\zeta_V(3)^{-1}$ if $V$ is a surface.", "revisions": [ { "version": "v2", "updated": "2011-02-17T16:13:54.000Z" } ], "analyses": { "keywords": [ "average rank", "elliptic curves", "positive rank" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.0152K" } } }