{ "id": "1010.0040", "version": "v2", "published": "2010-10-01T00:20:53.000Z", "updated": "2011-03-18T21:49:50.000Z", "title": "Global well-posedness and scattering for the defocusing, $L^{2}$-critical, nonlinear Schrödinger equation when $d = 1$", "authors": [ "Benjamin Dodson" ], "comment": "48 pages", "categories": [ "math.AP" ], "abstract": "In this paper we prove that the defocusing, quintic nonlinear Schr\\\"odinger initial value problem is globally well-posed and scattering for $u_{0} \\in L^{2}(\\mathbf{R})$. To do this, we will prove a frequency localized interaction Morawetz estimate similar to the estimate made in [11]. Since we are considering an $L^{2}$ - critical initial value problem we will localize to low frequencies.", "revisions": [ { "version": "v2", "updated": "2011-03-18T21:49:50.000Z" } ], "analyses": { "subjects": [ "35Q55" ], "keywords": [ "nonlinear schrödinger equation", "global well-posedness", "initial value problem", "frequency localized interaction morawetz estimate", "localized interaction morawetz estimate similar" ], "note": { "typesetting": "TeX", "pages": 48, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1010.0040D" } } }