{ "id": "1009.6227", "version": "v2", "published": "2010-09-30T19:38:20.000Z", "updated": "2011-12-06T17:09:23.000Z", "title": "Geometric renormalization below the ground state", "authors": [ "Paul Smith" ], "comment": "39 pages; Typos and argument for noncompact target manifolds corrected; Published form available at http://imrn.oxfordjournals.org/cgi/content/abstract/rnr169?ijkey=OXVb8Exb1XuXqLz&keytype=ref", "doi": "10.1093/imrn/rnr169", "categories": [ "math.AP", "math-ph", "math.MP" ], "abstract": "The caloric gauge was introduced by Tao with studying large data energy critical wave maps mapping from $\\mathbf{R}^{2+1}$ to hyperbolic space $\\mathbf{H}^m$ in view. In \\cite{BIKT} Bejenaru, Ionescu, Kenig, and Tataru adapted the caloric gauge to the setting of Schr\\\"odinger maps from $\\mathbf{R}^{d + 1}$ to the standard sphere $S^2 \\hookrightarrow \\mathbf{R}^3$ with initial data small in the critical Sobolev norm. Here we develop the caloric gauge in a bounded geometry setting with a construction valid up to the ground state energy.", "revisions": [ { "version": "v2", "updated": "2011-12-06T17:09:23.000Z" } ], "analyses": { "keywords": [ "ground state", "geometric renormalization", "caloric gauge", "critical wave maps mapping", "data energy critical wave maps" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 39, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.6227S" } } }