{ "id": "1009.5740", "version": "v1", "published": "2010-09-29T01:59:21.000Z", "updated": "2010-09-29T01:59:21.000Z", "title": "The Weak Bruhat Order and Separable Permutations", "authors": [ "Fan Wei" ], "categories": [ "math.CO" ], "abstract": "In this paper we consider the rank generating function of a separable permutation $\\pi$ in the weak Bruhat order on the two intervals $[\\text{id}, \\pi]$ and $[\\pi, w_0]$, where $w_0 = n,(n-1),..., 1$. We show a surprising result that the product of these two generating functions is the generating function for the symmetric group with the weak order. We then obtain explicit formulas for the rank generating functions on $[\\text{id}, \\pi]$ and $[\\pi, w_0]$, which leads to the rank-symmetry and unimodality of the two graded posets.", "revisions": [ { "version": "v1", "updated": "2010-09-29T01:59:21.000Z" } ], "analyses": { "keywords": [ "weak bruhat order", "separable permutation", "rank generating function", "symmetric group", "weak order" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.5740W" } } }