{ "id": "1009.5726", "version": "v2", "published": "2010-09-29T01:02:01.000Z", "updated": "2010-10-05T13:47:10.000Z", "title": "Global solutions for the generalized Boussinesq equation in low-order Sobolev spaces", "authors": [ "Luiz Gustavo Farah", "Hongwei Wang" ], "comment": "13 pages. References updated", "journal": "Electronic Journal of Differential Equations, Vol. 2012 (2012), No. 41, pp. 1-13", "categories": [ "math.AP" ], "abstract": "We show that the Cauchy problem for the defocusing generalized Boussinesq equation $u_{tt}-u_{xx}+u_{xxxx}-(|u|^{2k}u)_{xx}=0$, $k\\geq1$, on the real line is globally well-posed in $H^{s}(\\R)$ for $s>1-({1}/{3k})$. We use the \"$I$-method\" to define a modification of the energy functional that is \"almost conserved\" in time. Our result extends the previous one obtained by Farah and Linares (2010 \\textit{J. London Math. Soc.} \\textbf{81} 241-254) when $k=1$.", "revisions": [ { "version": "v2", "updated": "2010-10-05T13:47:10.000Z" } ], "analyses": { "subjects": [ "35B30", "35Q55", "35Q72" ], "keywords": [ "low-order sobolev spaces", "global solutions", "london math", "cauchy problem", "result extends" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.5726F" } } }