{ "id": "1009.5361", "version": "v2", "published": "2010-09-27T19:11:36.000Z", "updated": "2010-10-04T03:17:30.000Z", "title": "Instantons, concordance, and Whitehead doubling", "authors": [ "Matthew Hedden", "Paul Kirk" ], "comment": "33 pages, 5 figures. Reference corrected", "categories": [ "math.GT", "math.DG" ], "abstract": "We use moduli spaces of instantons and Chern-Simons invariants of flat connections to prove that the Whitehead doubles of (2,2^n-1) torus knots are independent in the smooth knot concordance group; that is, they freely generate a subgroup of infinite rank.", "revisions": [ { "version": "v2", "updated": "2010-10-04T03:17:30.000Z" } ], "analyses": { "subjects": [ "57N70", "57M25", "57M27", "57R57", "57R90" ], "keywords": [ "whitehead doubling", "instantons", "smooth knot concordance group", "torus knots", "chern-simons invariants" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "inspire": 871158, "adsabs": "2010arXiv1009.5361H" } } }