{ "id": "1009.5234", "version": "v1", "published": "2010-09-27T12:03:58.000Z", "updated": "2010-09-27T12:03:58.000Z", "title": "Vector Bundles over Normal Varieties Trivialized by Finite Morphisms", "authors": [ "Marco Antei", "Vikram Mehta" ], "comment": "5 pages", "journal": "Archiv der Mathematik, Volume 97, Issue 6 (2011), Page 523-527", "categories": [ "math.AG" ], "abstract": "Let $Y$ be a normal and projective variety over an algebraically closed field $k$ and $V$ a vector bundle over $Y$. We prove that if there exist a $k$-scheme $X$ and a finite surjective morphism $g:X\\to Y$ that trivializes $V$ then $V$ is essentially finite.", "revisions": [ { "version": "v1", "updated": "2010-09-27T12:03:58.000Z" } ], "analyses": { "subjects": [ "14L15", "14J50" ], "keywords": [ "normal varieties", "vector bundle", "finite morphisms", "finite surjective morphism", "essentially finite" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.5234A" } } }