{ "id": "1009.4945", "version": "v2", "published": "2010-09-24T21:00:34.000Z", "updated": "2013-12-05T14:51:53.000Z", "title": "Abelian subalgebras and the Jordan structure of a von Neumann algebra", "authors": [ "Andreas Doering", "John Harding" ], "comment": "11 pages, no figures; v2: minor correction, improved presentation, added proof of converse of main result", "categories": [ "math-ph", "math.MP", "math.OA", "quant-ph" ], "abstract": "For von Neumann algebras M, N not isomorphic to C^2 and without type I_2 summands, we show that for an order-isomorphism f:AbSub(M)->AbSub(N) between the posets of abelian von Neumann subalgebras of M and N, there is a unique Jordan *-isomorphism g:M->N with the image g[S] equal to f(S) for each abelian von Neumann subalgebra S of M. The converse also holds. This shows the Jordan structure of a von Neumann algebra not isomorphic to C^2 and without type I_2 summands is determined by the poset of its abelian subalgebras, and has implications in recent approaches to foundational issues in quantum mechanics.", "revisions": [ { "version": "v2", "updated": "2013-12-05T14:51:53.000Z" } ], "analyses": { "subjects": [ "46L10", "81P05", "03G12", "17C65", "18B25" ], "keywords": [ "von neumann algebra", "jordan structure", "abelian subalgebras", "abelian von neumann subalgebra", "foundational issues" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.4945D" } } }