{ "id": "1009.4538", "version": "v1", "published": "2010-09-23T08:13:28.000Z", "updated": "2010-09-23T08:13:28.000Z", "title": "Navier-Stokes equations on the $β$-plane", "authors": [ "Mustafa Al-Jaboori", "Djoko Wirosoetisno" ], "categories": [ "math.AP" ], "abstract": "We show that, given a sufficiently regular forcing, the solution of the two-dimensional Navier--Stokes equations on the periodic $\\beta$-plane (i.e.\\ with the Coriolis force varying as $f_0+\\beta y$) will become nearly zonal: with the vorticity $\\omega(x,y,t)=\\wb(y,t)+\\wt(x,y,t)$, one has $|\\wt|_{H^s}^2\\le\\beta^{-1} M_s(\\...)$ as $t\\to\\infty$. We use this show that, for sufficiently large $\\beta$, the global attractor of this system reduces to a point.", "revisions": [ { "version": "v1", "updated": "2010-09-23T08:13:28.000Z" } ], "analyses": { "subjects": [ "35B40", "35B41", "76D05" ], "keywords": [ "two-dimensional navier-stokes equations", "coriolis force", "global attractor", "system reduces", "sufficiently regular" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.4538A" } } }