{ "id": "1009.3900", "version": "v1", "published": "2010-09-20T17:50:38.000Z", "updated": "2010-09-20T17:50:38.000Z", "title": "The word problem and the Aharoni-Berger-Ziv conjecture on the connectivity of independence complexes", "authors": [ "Jonathan Ariel Barmak" ], "comment": "2 pages", "categories": [ "math.CO", "math.AT", "math.LO" ], "abstract": "For each finite simple graph $G$, Aharoni, Berger and Ziv consider a recursively defined number $\\psi (G) \\in \\mathbb{Z}\\cup \\{+ \\infty \\}$ which gives a lower bound for the topological connectivity of the independence complex $I_G$. They conjecture that this bound is optimal for every graph. We use a result of recursion theory to give a short disproof of this claim.", "revisions": [ { "version": "v1", "updated": "2010-09-20T17:50:38.000Z" } ], "analyses": { "subjects": [ "05C69", "55P99", "03D80", "57M05" ], "keywords": [ "word problem", "aharoni-berger-ziv conjecture", "independence complexes", "connectivity", "finite simple graph" ], "note": { "typesetting": "TeX", "pages": 2, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.3900B" } } }