{ "id": "1009.3869", "version": "v2", "published": "2010-09-20T16:04:19.000Z", "updated": "2010-10-11T14:14:26.000Z", "title": "Finite dimensional irreducible representations of finite W-algebras associated to even multiplicity nilpotent orbits in classical Lie algebras", "authors": [ "Jonathan S. Brown", "Simon M. Goodwin" ], "comment": "38 Pages; made some minor corrections", "categories": [ "math.RT", "math-ph", "math.MP", "math.QA", "math.RA" ], "abstract": "We consider finite W-algebras U(g,e) associated to even multiplicity nilpotent elements in classical Lie algebras. We give a classification of finite dimensional irreducible U(g,e)-modules with integral central character in terms of the highest weight theory for finite W-algebras. As a corollary, we obtain a parametrization of primitive ideals of U(g) with associated variety the closure of the adjoint orbit of e and integral central character.", "revisions": [ { "version": "v2", "updated": "2010-10-11T14:14:26.000Z" } ], "analyses": { "subjects": [ "17B10", "81R05" ], "keywords": [ "finite dimensional irreducible representations", "classical lie algebras", "multiplicity nilpotent orbits", "finite w-algebras", "integral central character" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "inspire": 870567, "adsabs": "2010arXiv1009.3869B" } } }