{ "id": "1009.3694", "version": "v1", "published": "2010-09-20T05:00:19.000Z", "updated": "2010-09-20T05:00:19.000Z", "title": "Continuity of spectral averaging", "authors": [ "C. A. Marx" ], "journal": "Proc. Math. Soc., posted on August 20, 2010, PII S 0002-9939(2010)10629-9", "categories": [ "math-ph", "math.MP" ], "abstract": "We consider averages $\\kappa$ of spectral measures of rank one perturbations with respect to a $\\sigma$-finite measure $\\nu$. It is examined how various degrees of continuity of $\\nu$ with respect to $\\alpha$-dimensional Hausdorff measures ($0 \\leq \\alpha \\leq 1$) are inherited by $\\kappa$. This extends Kotani's trick where $\\nu$ is simply the Lebesgue measure.", "revisions": [ { "version": "v1", "updated": "2010-09-20T05:00:19.000Z" } ], "analyses": { "subjects": [ "81Q10", "81Q15", "47B15", "47B36", "47B80" ], "keywords": [ "spectral averaging", "continuity", "extends kotanis trick", "dimensional hausdorff measures", "finite measure" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.3694M" } } }