{ "id": "1009.3583", "version": "v1", "published": "2010-09-18T21:09:50.000Z", "updated": "2010-09-18T21:09:50.000Z", "title": "A note on Mahler's conjecture", "authors": [ "Shlomo Reisner", "Carsten Schütt", "Elisabeth M. Werner" ], "categories": [ "math.FA" ], "abstract": "Let $K$ be a convex body in $\\mathbb{R}^n$ with Santal\\'o point at 0\\. We show that if $K$ has a point on the boundary with positive generalized Gau{\\ss} curvature, then the volume product $|K| |K^\\circ|$ is not minimal. This means that a body with minimal volume product has Gau{\\ss} curvature equal to 0 almost everywhere and thus suggests strongly that a minimal body is a polytope.", "revisions": [ { "version": "v1", "updated": "2010-09-18T21:09:50.000Z" } ], "analyses": { "subjects": [ "52A20" ], "keywords": [ "mahlers conjecture", "minimal volume product", "santalo point", "minimal body", "convex body" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.3583R" } } }