{ "id": "1009.3573", "version": "v3", "published": "2010-09-18T17:34:47.000Z", "updated": "2010-11-17T16:15:47.000Z", "title": "Lower bounds on the Hausdorff measure of nodal sets", "authors": [ "Christopher D. Sogge", "Steve Zelditch" ], "comment": "Added detail to exposition (especially Proposition 1) and added references to recent results of Colding-Minicozzi and of Mangoubi. To appear in MRL", "journal": "Math. Res. Lett. 18 (2011), no. 1, 25-37", "categories": [ "math.AP" ], "abstract": "Let $\\ncal_{\\phi_{\\lambda}}$ be the nodal hypersurface of a $\\Delta$-eigenfunction $\\phi_{\\lambda}$ of eigenvalue $\\lambda^2$ on a smooth Riemannian manifold. We prove the following lower bound for its surface measure: $\\hcal^{n-1}(\\ncal_{\\phi_{\\lambda}}) \\geq C \\lambda^{\\frac74-\\frac{3n}4} $. The best prior lower bound appears to be $e^{- C \\lambda}$.", "revisions": [ { "version": "v3", "updated": "2010-11-17T16:15:47.000Z" } ], "analyses": { "keywords": [ "nodal sets", "hausdorff measure", "best prior lower bound appears", "smooth riemannian manifold", "nodal hypersurface" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.3573S" } } }