{ "id": "1009.3040", "version": "v2", "published": "2010-09-15T21:07:29.000Z", "updated": "2011-10-20T16:28:06.000Z", "title": "Symmetric quivers, invariant theory, and saturation theorems for the classical groups", "authors": [ "Steven V Sam" ], "comment": "29 pages, no figures; v2: updated Theorem 2.4 to odd characteristic, added Remark 3.9, added references, corrected some definitions and typos", "journal": "Adv. Math. 229 (2012), no. 2, 1104-1135", "doi": "10.1016/j.aim.2011.10.009", "categories": [ "math.RT" ], "abstract": "Let G denote either a special orthogonal group or a symplectic group defined over the complex numbers. We prove the following saturation result for G: given dominant weights \\lambda^1, ..., \\lambda^r such that the tensor product V_{N\\lambda^1} \\otimes ... \\otimes V_{N\\lambda^r} contains nonzero G-invariants for some N \\ge 1, we show that the tensor product V_{2\\lambda^1} \\otimes ... \\otimes V_{2\\lambda^r} also contains nonzero G-invariants. This extends results of Kapovich-Millson and Belkale-Kumar and complements similar results for the general linear group due to Knutson-Tao and Derksen-Weyman. Our techniques involve the invariant theory of quivers equipped with an involution and the generic representation theory of certain quivers with relations.", "revisions": [ { "version": "v2", "updated": "2011-10-20T16:28:06.000Z" } ], "analyses": { "subjects": [ "16G20", "20G05", "15A72", "14L30", "05E10" ], "keywords": [ "invariant theory", "saturation theorems", "symmetric quivers", "classical groups", "contains nonzero g-invariants" ], "tags": [ "journal article" ], "publication": { "publisher": "Elsevier", "journal": "Adv. Math." }, "note": { "typesetting": "TeX", "pages": 29, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.3040S" } } }