{ "id": "1009.2695", "version": "v1", "published": "2010-09-14T15:26:45.000Z", "updated": "2010-09-14T15:26:45.000Z", "title": "Sur le théorème de F. Schur pour une variété presque hermitienne", "authors": [ "Ognian Kassabov" ], "comment": "3 pages, MR 84c:53022", "journal": "C. R. Acad. Bulg. Sci., 35, no. 7, 1982, 905-907", "categories": [ "math.DG" ], "abstract": "Let M be an almost Hermitian manifold of dimension greater or equal to 6. The following theorems are proved: Theorem 1. If M is of pointwise constant {\\theta}-holomorphic sectional curvature for a number {\\theta} in (0,{\\pi}/2) then M is of constant sectional curvature or a K\\\"ahler manifold of constant holomorphic sectional curvature. Theorem 2. If M is of pointwise constant antiholomorphic sectional curvature and M is an RK-manifold (or AH3-manifold), then M is of constant antiholomorphic sectional curvature.", "revisions": [ { "version": "v1", "updated": "2010-09-14T15:26:45.000Z" } ], "analyses": { "subjects": [ "53B35" ], "keywords": [ "presque hermitienne", "schur pour", "pointwise constant antiholomorphic sectional curvature", "constant holomorphic sectional curvature", "constant sectional curvature" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 3, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.2695K" } } }