{ "id": "1009.2260", "version": "v3", "published": "2010-09-12T19:22:10.000Z", "updated": "2011-12-22T17:37:48.000Z", "title": "Computing the confidence levels for a root-mean-square test of goodness-of-fit, II", "authors": [ "William Perkins", "Mark Tygert", "Rachel Ward" ], "comment": "14 pages, 3 figures (each with two parts), 4 tables", "categories": [ "stat.CO", "stat.ME" ], "abstract": "This paper extends our earlier article, \"Computing the confidence levels for a root-mean-square test of goodness-of-fit;\" unlike in the earlier article, the models in the present paper involve parameter estimation -- both the null and alternative hypotheses in the associated tests are composite. We provide efficient black-box algorithms for calculating the asymptotic confidence levels of a variant on the classic chi-squared test. In some circumstances, it is also feasible to compute the exact confidence levels via Monte Carlo simulation.", "revisions": [ { "version": "v3", "updated": "2011-12-22T17:37:48.000Z" } ], "analyses": { "keywords": [ "root-mean-square test", "goodness-of-fit", "earlier article", "efficient black-box algorithms", "asymptotic confidence levels" ], "note": { "typesetting": "TeX", "pages": 14, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.2260P" } } }