{ "id": "1009.2249", "version": "v2", "published": "2010-09-12T17:03:35.000Z", "updated": "2010-12-02T19:18:11.000Z", "title": "Numerical ranges of $C_0(N)$ contractions", "authors": [ "Chafiq Benhida", "Pamela Gorkin", "Dan Timotin" ], "comment": "v1: 13 pages; v2: 14 pages; typos removed, title changed, slight change to the proof of Theorem 4.6. The final publication will be available in IEOT at http://www.springerlink.com", "categories": [ "math.FA", "math.CV" ], "abstract": "A conjecture of Halmos proved by Choi and Li states that the closure of the numerical range of a contraction on a Hilbert space is the intersection of the closure of the numerical ranges of all its unitary dilations. We show that for $C_0(N)$ contractions one can restrict the intersection to a smaller family of dilations. This generalizes a finite dimensional result of Gau and Wu.", "revisions": [ { "version": "v2", "updated": "2010-12-02T19:18:11.000Z" } ], "analyses": { "subjects": [ "47A12", "47A20" ], "keywords": [ "numerical range", "contraction", "finite dimensional result", "li states", "intersection" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.2249B" } } }