{ "id": "1009.1843", "version": "v2", "published": "2010-09-09T18:31:59.000Z", "updated": "2011-08-29T22:24:31.000Z", "title": "A small probabilistic universal set of starting points for finding roots of complex polynomials by Newton's method", "authors": [ "Béla Bollobás", "Malte Lackmann", "Dierk Schleicher" ], "comment": "17 pages, 6 figures. Minor update and slight improvements upon referee recommendations", "categories": [ "math.DS", "math.NA" ], "abstract": "We specify a small set, consisting of $O(d(\\log\\log d)^2)$ points, that intersects the basins under Newton's method of \\emph{all} roots of \\emph{all} (suitably normalized) complex polynomials of fixed degrees $d$, with arbitrarily high probability. This set is an efficient and universal \\emph{probabilistic} set of starting points to find all roots of polynomials of degree $d$ using Newton's method; the best known \\emph{deterministic} set of starting points consists of $\\lceil 1.1d(\\log d)^2\\rceil$ points.", "revisions": [ { "version": "v2", "updated": "2011-08-29T22:24:31.000Z" } ], "analyses": { "subjects": [ "37F10", "49M15" ], "keywords": [ "small probabilistic universal set", "newtons method", "starting points", "complex polynomials", "finding roots" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.1843B" } } }