{ "id": "1009.1434", "version": "v2", "published": "2010-09-08T01:20:44.000Z", "updated": "2010-11-28T20:27:23.000Z", "title": "Transcendence degree of zero-cycles and the structure of Chow motives", "authors": [ "Sergey Gorchinskiy", "Vladimir Guletskii" ], "comment": "13 pages, added references", "categories": [ "math.AG" ], "abstract": "We show how the notion of the transcendence degree of a zero-cycle on a smooth projective variety X is related to the structure of the motive M(X). This can be of particular interest in the context of Bloch's conjecture, especially for Godeaux surfaces, when the surface is given as a finite quotient of a suitable quintic in P^3.", "revisions": [ { "version": "v2", "updated": "2010-11-28T20:27:23.000Z" } ], "analyses": { "subjects": [ "14C15", "14C25" ], "keywords": [ "transcendence degree", "chow motives", "zero-cycle", "finite quotient", "blochs conjecture" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.1434G" } } }