{ "id": "1009.1083", "version": "v3", "published": "2010-09-06T16:16:08.000Z", "updated": "2012-05-07T23:09:55.000Z", "title": "Finite Time Singularities for Lagrangian Mean Curvature Flow", "authors": [ "André Neves" ], "comment": "Final version, to appear in Annals of Mathematics. Exposition improved. 46 pages", "categories": [ "math.DG", "math.AP", "math.SG" ], "abstract": "Given any embedded Lagrangian on a four dimensional compact Calabi-Yau, we find another Lagrangian in the same Hamiltonian isotopy class which develops a finite time singularity under mean curvature flow. This contradicts a weaker version of the Thomas-Yau conjecture regarding long time existence and convergence of Lagrangian mean curvature flow.", "revisions": [ { "version": "v3", "updated": "2012-05-07T23:09:55.000Z" } ], "analyses": { "keywords": [ "lagrangian mean curvature flow", "finite time singularity", "thomas-yau conjecture regarding long time", "conjecture regarding long time existence" ], "note": { "typesetting": "TeX", "pages": 46, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.1083N" } } }