{ "id": "1009.1062", "version": "v1", "published": "2010-09-06T14:02:06.000Z", "updated": "2010-09-06T14:02:06.000Z", "title": "Smooth representations of GL_m(D) VI : semisimple types", "authors": [ "Vincent Sécherre", "Shaun Stevens" ], "comment": "45 pages", "categories": [ "math.RT", "math.NT" ], "abstract": "We give a complete description of the category of smooth complex representations of the multiplicative group of a central simple algebra over a locally compact nonarchimedean local field. More precisely, for each inertial class in the Bernstein spectrum, we construct a type and compute its Hecke algebra. The Hecke algebras that arise are all naturally isomorphic to products of affine Hecke algebras of type A. We also prove that, for cuspidal classes, the simple type is unique up to conjugacy.", "revisions": [ { "version": "v1", "updated": "2010-09-06T14:02:06.000Z" } ], "analyses": { "subjects": [ "22E50" ], "keywords": [ "semisimple types", "smooth representations", "locally compact nonarchimedean local field", "smooth complex representations", "central simple algebra" ], "note": { "typesetting": "TeX", "pages": 45, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.1062S" } } }