{ "id": "1009.0935", "version": "v1", "published": "2010-09-05T17:40:00.000Z", "updated": "2010-09-05T17:40:00.000Z", "title": "Hydrogen atom in momentum space with a minimal length", "authors": [ "Djamil Bouaziz", "Nourredine Ferkous" ], "comment": "10 pages", "journal": "Phys.Rev.A82:022105,2010", "doi": "10.1103/PhysRevA.82.022105", "categories": [ "quant-ph", "gr-qc", "hep-ph" ], "abstract": "A momentum representation treatment of the hydrogen atom problem with a generalized uncertainty relation,which leads to a minimal length ({\\Delta}X_{i})_{min}= \\hbar \\sqrt(3{\\beta}+{\\beta}'), is presented. We show that the distance squared operator can be factorized in the case {\\beta}'=2{\\beta}. We analytically solve the s-wave bound-state equation. The leading correction to the energy spectrum caused by the minimal length depends on \\sqrt{\\beta}. An upper bound for the minimal length is found to be about 10^{-9} fm.", "revisions": [ { "version": "v1", "updated": "2010-09-05T17:40:00.000Z" } ], "analyses": { "subjects": [ "02.40.Gh", "03.65.Ca", "03.65.Ge" ], "keywords": [ "momentum space", "hydrogen atom problem", "momentum representation treatment", "s-wave bound-state equation", "minimal length depends" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review A", "year": 2010, "month": "Aug", "volume": 82, "number": 2, "pages": "022105" }, "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "inspire": 867245, "adsabs": "2010PhRvA..82b2105B" } } }