{ "id": "1009.0922", "version": "v2", "published": "2010-09-05T14:22:30.000Z", "updated": "2011-01-21T21:57:55.000Z", "title": "Defect Modes and Homogenization of Periodic Schrödinger Operators", "authors": [ "M. A. Hoefer", "M. I. Weinstein" ], "comment": "26 pages, 3 figures, to appear SIAM J. Math. Anal", "journal": "SIAM J. Math. Anal., vol. 43, pp. 971-996 (2011)", "doi": "10.1137/100807302", "categories": [ "math-ph", "math.AP", "math.MP" ], "abstract": "We consider the discrete eigenvalues of the operator $H_\\eps=-\\Delta+V(\\x)+\\eps^2Q(\\eps\\x)$, where $V(\\x)$ is periodic and $Q(\\y)$ is localized on $\\R^d,\\ \\ d\\ge1$. For $\\eps>0$ and sufficiently small, discrete eigenvalues may bifurcate (emerge) from spectral band edges of the periodic Schr\\\"odinger operator, $H_0 = -\\Delta_\\x+V(\\x)$, into spectral gaps. The nature of the bifurcation depends on the homogenized Schr\\\"odinger operator $L_{A,Q}=-\\nabla_\\y\\cdot A \\nabla_\\y +\\ Q(\\y)$. Here, $A$ denotes the inverse effective mass matrix, associated with the spectral band edge, which is the site of the bifurcation.", "revisions": [ { "version": "v2", "updated": "2011-01-21T21:57:55.000Z" } ], "analyses": { "keywords": [ "periodic schrödinger operators", "defect modes", "spectral band edge", "discrete eigenvalues", "homogenization" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 26, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.0922H" } } }