{ "id": "1009.0872", "version": "v3", "published": "2010-09-04T21:00:58.000Z", "updated": "2011-12-03T19:06:35.000Z", "title": "Primitive Divisors of Certain Elliptic Divisibility Sequences", "authors": [ "Paul Voutier", "Minoru Yabuta" ], "comment": "version accepted for publication. Difference of heights result moved to http://arxiv.org/abs/1104.4645 and improved. Proof simplified to remove need for special cases when n>20", "journal": "Acta Arith. 151 (2012), 165-190", "doi": "10.4064/aa151-2-2", "categories": [ "math.NT" ], "abstract": "Let $P$ be a non-torsion point on the elliptic curve $E_{a}: y^{2}=x^{3}+ax$. We show that if $a$ is fourth-power-free and either $n>2$ is even or $n>1$ is odd with $x(P)<0$ or $x(P)$ a perfect square, then the $n$-th element of the elliptic divisibility sequence generated by $P$ always has a primitive divisor.", "revisions": [ { "version": "v3", "updated": "2011-12-03T19:06:35.000Z" } ], "analyses": { "subjects": [ "11G05", "11A41" ], "keywords": [ "primitive divisor", "perfect square", "th element", "elliptic curve", "elliptic divisibility sequence" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.0872V" } } }