{ "id": "1009.0837", "version": "v1", "published": "2010-09-04T13:39:58.000Z", "updated": "2010-09-04T13:39:58.000Z", "title": "The Lattice and Simplex Structure of States on Pseudo Effect Algebras", "authors": [ "Anatolij Dvurecenskij" ], "categories": [ "math.FA" ], "abstract": "We study states, measures, and signed measures on pseudo effect algebras with some kind of the Riesz Decomposition Property, (RDP). We show that the set of all Jordan signed measures is always an Abelian Dedekind complete $\\ell$-group. Therefore, the state space of the pseudo effect algebra with (RDP) is either empty or a nonempty Choquet simplex or even a Bauer simplex. This will allow represent states on pseudo effect algebras by standard integrals.", "revisions": [ { "version": "v1", "updated": "2010-09-04T13:39:58.000Z" } ], "analyses": { "subjects": [ "81P10" ], "keywords": [ "pseudo effect algebra", "simplex structure", "nonempty choquet simplex", "abelian dedekind complete", "riesz decomposition property" ], "tags": [ "journal article" ], "publication": { "doi": "10.1007/s10773-011-0775-1", "journal": "International Journal of Theoretical Physics", "year": 2011, "month": "Sep", "volume": 50, "number": 9, "pages": 2758 }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011IJTP...50.2758D" } } }