{ "id": "1009.0468", "version": "v1", "published": "2010-09-02T16:37:02.000Z", "updated": "2010-09-02T16:37:02.000Z", "title": "Geometric renormalisation and Hausdorff dimension for loop-approximable geodesics escaping to infinity", "authors": [ "Kurt Falk", "Bernd O. Stratmann" ], "comment": "11 pages, 3 figures", "categories": [ "math.DS" ], "abstract": "The main result of this paper is to show that if $\\H$ is a normal subgroup of a Kleinian group $G$ such that $G/\\H$ contains a coset which is represented by some loxodromic element, then the Hausdorff dimension of the transient limit set of $\\H$ coincides with the Hausdorff dimension of the limit set of $G$. This observation extends previous results by Fern\\'andez and Meli\\'an for Riemann surfaces.", "revisions": [ { "version": "v1", "updated": "2010-09-02T16:37:02.000Z" } ], "analyses": { "keywords": [ "hausdorff dimension", "loop-approximable geodesics escaping", "geometric renormalisation", "transient limit set", "riemann surfaces" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.0468F" } } }