{ "id": "1009.0331", "version": "v2", "published": "2010-09-02T05:49:54.000Z", "updated": "2011-02-04T09:44:45.000Z", "title": "Instanton Floer homology for lens spaces", "authors": [ "H. Sasahira" ], "comment": "33 pages: an error in Section 4.2 is corrected: Section 4.3 and 4.4 are rewritten", "categories": [ "math.GT" ], "abstract": "We construct instanton Floer homology for lens spaces $L(p,q)$. As an application, we prove that $X = \\CP^2 # \\CP^2$ does not admit a decomposition $X = X_1 \\cup X_2$. Here $X_1$ and $X_2$ are oriented, simply connected, non-spin 4-manifolds with $b^+ = 1$ and with boundary $L(p, 2)$, and $p$ is a prime number of the form $16N+1$.", "revisions": [ { "version": "v2", "updated": "2011-02-04T09:44:45.000Z" } ], "analyses": { "subjects": [ "57R57", "57R58" ], "keywords": [ "lens spaces", "construct instanton floer homology", "prime number", "application", "decomposition" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1009.0331S" } } }