{ "id": "1008.5361", "version": "v1", "published": "2010-08-31T16:51:10.000Z", "updated": "2010-08-31T16:51:10.000Z", "title": "The maximum degree of planar graphs I. Series-parallel graphs", "authors": [ "Michael Drmota", "Omer Gimenez", "Marc Noy" ], "comment": "38 pages", "categories": [ "math.CO" ], "abstract": "We prove that the maximum degree $\\Delta_n$ of a random series-parallel graph with $n$ vertices satisfies $\\Delta_n/\\log n \\to c$ in probability, and $\\mathbb{E}\\, \\Delta_n \\sim c \\log n$ for a computable constant $c>0$. The same result holds for outerplanar graphs.", "revisions": [ { "version": "v1", "updated": "2010-08-31T16:51:10.000Z" } ], "analyses": { "keywords": [ "maximum degree", "random series-parallel graph", "result holds", "outerplanar graphs", "vertices satisfies" ], "note": { "typesetting": "TeX", "pages": 38, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.5361D" } } }