{ "id": "1008.5239", "version": "v1", "published": "2010-08-31T07:44:43.000Z", "updated": "2010-08-31T07:44:43.000Z", "title": "An analogue of Ramanujan's sum with respect to regular integers (mod $r$)", "authors": [ "Pentti Haukkanen", "László Tóth" ], "categories": [ "math.NT" ], "abstract": "An integer $a$ is said to be regular (mod $r$) if there exists an integer $x$ such that $a^2x\\equiv a\\pmod{r}$. In this paper we introduce an analogue of Ramanujan's sum with respect to regular integers (mod $r$) and show that this analogue possesses properties similar to those of the usual Ramanujan's sum.", "revisions": [ { "version": "v1", "updated": "2010-08-31T07:44:43.000Z" } ], "analyses": { "subjects": [ "11A25", "11L03" ], "keywords": [ "regular integers", "analogue possesses properties similar", "usual ramanujans sum" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.5239H" } } }