{ "id": "1008.4544", "version": "v3", "published": "2010-08-26T16:58:22.000Z", "updated": "2012-03-29T13:18:21.000Z", "title": "Restrictions of generalized Verma modules to symmetric pairs", "authors": [ "Toshiyuki Kobayashi" ], "comment": "31 pages, To appear in Transformation Groups", "journal": "Transformation Groups 17 (2012), pp. 523-546", "doi": "10.1007/s00031-012-9180-y", "categories": [ "math.RT", "math-ph", "math.CO", "math.MP" ], "abstract": "We initiate a new line of investigation on branching problems for generalized Verma modules with respect to complex reductive symmetric pairs (g,k). Here we note that Verma modules of g may not contain any simple module when restricted to a reductive subalgebra k in general. In this article, using the geometry of K_C orbits on the generalized flag variety G_C/P_C, we give a necessary and sufficient condition on the triple (g,k, p) such that the restriction X|_k always contains simple k-modules for any g-module $X$ lying in the parabolic BGG category O^p attached to a parabolic subalgebra p of g. Formulas are derived for the Gelfand-Kirillov dimension of any simple k-module occurring in a simple generalized Verma module of g. We then prove that the restriction X|_k is multiplicity-free for any generic g-module X \\in O if and only if (g,k) is isomorphic to a direct sum of (A_n,A_{n-1}), (B_n,D_n), or (D_{n+1},B_n). We also see that the restriction X|_k is multiplicity-free for any symmetric pair (g, k) and any parabolic subalgebra p with abelian nilradical and for any generic g-module X \\in O^p. Explicit branching laws are also presented.", "revisions": [ { "version": "v3", "updated": "2012-03-29T13:18:21.000Z" } ], "analyses": { "subjects": [ "22E47", "22F30", "53C35" ], "keywords": [ "restriction", "generic g-module", "parabolic subalgebra", "complex reductive symmetric pairs", "parabolic bgg category" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.4544K" } } }