{ "id": "1008.4311", "version": "v1", "published": "2010-08-25T16:31:39.000Z", "updated": "2010-08-25T16:31:39.000Z", "title": "The gradient flow of the $L^2$ curvature energy on surfaces", "authors": [ "Jeffrey Streets" ], "categories": [ "math.DG", "math.AP" ], "abstract": "We investigate the gradient flow of the $L^2$ norm of the Riemannian curvature on surfaces. We show long time existence with arbitrary initial data, and exponential convergence of the volume normalized flow to a constant scalar curvature metric when the initial energy is below a constant determined by the Euler characteristic of the underlying surface.", "revisions": [ { "version": "v1", "updated": "2010-08-25T16:31:39.000Z" } ], "analyses": { "keywords": [ "gradient flow", "curvature energy", "constant scalar curvature metric", "long time existence", "arbitrary initial data" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2010arXiv1008.4311S" } } }